
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments

regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington

Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302.

Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any oenalty for failing to comply with a collection of

information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

a. REPORT

Greedy Learning of Graphical Models with Small Girth

14. ABSTRACT

16. SECURITY CLASSIFICATION OF:

This paper presents three new greedy algorithms for learning discrete graphical models. The original greedy

algorithm constructed the neighborhood of each node by sequentially adding nodes (or variable) in each step which

currently produced the maximum decrease in its conditional entropy. Though simple, this did not always yield the

correct graph when there are short cycles, since a non-neighbor may produce most decrease in the conditional

entropy in a step and it gets added to its neighborhood.

1. REPORT DATE (DD-MM-YYYY)

4. TITLE AND SUBTITLE

13. SUPPLEMENTARY NOTES

The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department

of the Army position, policy or decision, unless so designated by other documentation.

12. DISTRIBUTION AVAILIBILITY STATEMENT

Approved for public release; distribution is unlimited.

UU

9. SPONSORING/MONITORING AGENCY NAME(S) AND

ADDRESS(ES)

6. AUTHORS

7. PERFORMING ORGANIZATION NAMES AND ADDRESSES

U.S. Army Research Office

 P.O. Box 12211

 Research Triangle Park, NC 27709-2211

15. SUBJECT TERMS

learnign graphical models, greedy methods

Avik Ray, Sujay Sanghavi, Sanjay Shakkottai

University of Texas at Austin

101 East 27th Street

Suite 5.300

Austin, TX 78712 -1539

REPORT DOCUMENTATION PAGE

b. ABSTRACT

UU

c. THIS PAGE

UU

2. REPORT TYPE

Technical Report

17. LIMITATION OF

ABSTRACT

UU

15. NUMBER

OF PAGES

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

5c. PROGRAM ELEMENT NUMBER

5b. GRANT NUMBER

5a. CONTRACT NUMBER

W911NF-11-1-0265

611102

Form Approved OMB NO. 0704-0188

59441-NS.2

11. SPONSOR/MONITOR'S REPORT

NUMBER(S)

10. SPONSOR/MONITOR'S ACRONYM(S)

 ARO

8. PERFORMING ORGANIZATION REPORT

NUMBER

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER

Sanjay Shakkottai

512-471-5376

3. DATES COVERED (From - To)

Standard Form 298 (Rev 8/98)

Prescribed by ANSI Std. Z39.18

-

Greedy Learning of Graphical Models with Small Girth

Report Title

ABSTRACT

This paper presents three new greedy algorithms for learning discrete graphical models. The original greedy

algorithm constructed the neighborhood of each node by sequentially adding nodes (or variable) in each step which

currently produced the maximum decrease in its conditional entropy. Though simple, this did not always yield the

correct graph when there are short cycles, since a non-neighbor may produce most decrease in the conditional

entropy in a step and it gets added to its neighborhood.

The new algorithms can overcome this problem in three different ways. The recursive greedy algorithm iteratively

runs the greedy algorithm in an inner loop, but each time only includes the last added node in the neighborhood set.

On other hand the forward-backward greedy algorithm includes a node deletion step in each iteration, which prunes

the incorrect nodes from the neighborhood set that may have been added earlier. Finally the greedy algorithm with

pruning runs the greedy algorithm until completion and then removes all the incorrect neighbors. We give both

analytical guarantees and empirical results for our algorithms. Running the algorithms with a candidate set of nodes

instead of all the nodes and their greedy approach enables them to efficiently learn graphs even with small girth,

which the previous greedy and convex optimization based algorithms cannot learn.

1

Greedy Learning of Graphical Models with Small Girth
Avik Ray, Sujay Sanghavi and Sanjay Shakkottai

Abstract—This paper presents three new greedy algorithms for
learning discrete graphical models. The original greedy algorithm
constructed the neighborhood of each node by sequentially
adding nodes (or variable) in each step which currently produced
the maximum decrease in its conditional entropy. Though simple,
this did not always yield the correct graph when there are
short cycles, since a non-neighbor may produce most decrease
in the conditional entropy in a step and it gets added to its
neighborhood.

The new algorithms can overcome this problem in three
different ways. The recursive greedy algorithm iteratively runs the
greedy algorithm in an inner loop, but each time only includes
the last added node in the neighborhood set. On other hand
the forward-backward greedy algorithm includes a node deletion
step in each iteration, which prunes the incorrect nodes from the
neighborhood set that may have been added earlier. Finally the
greedy algorithm with pruning runs the greedy algorithm until
completion and then removes all the incorrect neighbors. We
give both analytical guarantees and empirical results for our
algorithms. Running the algorithms with a candidate set of nodes
instead of all the nodes and their greedy approach enables them to
efficiently learn graphs even with small girth, which the previous
greedy and convex optimization based algorithms cannot learn.

I. INTRODUCTION

Graphical models have been widely used to tractably capture
dependence relations amongst a collection of random variables
in a variety of domains, ranging from statistical physics, social
networks to biological applications [2]–[7]. A key challenge in
these settings is in learning the precise dependence structure
among the random variables – a problem that in the worst case
is known to be NP hard in the number of variables [8]. How-
ever, with restrictions placed on the class of graphical models
considered, it is known that polynomial time algorithms exist.
Exploring the relationship between classes of graphical models
that can be learnt, and the sample and computation complexity
of doing so is an active field of research. One of the first results
in this spirit is that by Chow and Liu [9], where efficient
algorithms for learning tree-structured graphical models were
developed. Since then, there have been several algorithms
developed for learning restricted classes of graphical models
(see Section I-B for more details).

A. Main Contributions

In this paper we propose three new greedy algorithms to
find the Markov graph for any discrete graphical model. While
greedy algorithms (that learn the structure by sequentially

A. Ray, S. Sanghavi and S. Shakkottai are with the Department of
Electrical and Computer Engineering, The University of Texas at Austin,
USA, Emails: avik@utexas.edu, sanghavi@mail.utexas.edu,
shakkott@austin.utexas.edu. An earlier version of this work has
appeared in the Proceedings of the 50th Annual Allerton Conference on Com-
munication, Control, and Computing, 2012 [1]. We would like to acknowledge
NSF grants 0954059 and 1017525, and ARO grant W911NF-11-1-0265.

adding nodes and edges to the graph) tend to have low
computational complexity, they are known to fail (i.e., do not
determine the correct graph structure) in loopy graphs with
low girth [13], even when they have access to exact statistics.
This is because a non-neighbor can be the best node at a
particular iteration; once added, it will always remain. Convex
optimization based algorithms like in [10] by Ravikumar et
al. (henceforth we call this the RWL algorithm) also cannot
provide theoretical guarantees of learning in these situations.
These methods require strong incoherence conditions to guar-
antee success. But such conditions may not be satisfied in even
simple graphs with small girth [18]. Example: If we run the
existing algorithms for an Ising model on a diamond network
(Figure 2) with D = 4 the performance plot in Figure 1 shows
that greedy and RWL algorithms fail to learn the correct graph
even with large number of samples.

Fig. 1: Performance of different algorithms in an Ising model
on diamond network with 6 nodes (Figure 2 with D = 4).
Both the Greedy(ε) and RWL algorithms estimate an incorrect
edge between nodes 0 and 5 therefore never recovers the
true graph G, while our new RecGreedy(ε), FbGreedy(ε, α),
GreedyP (ε) algorithms succeed.

In this paper, we present three algorithms that overcome this
shortfall of greedy and convex optimization based algorithms.
• The recursive greedy algorithm is based on the observa-

tion that the last node added by the simple, naive greedy
algorithm is always a neighbor; thus, we can use the
naive greedy algorithm as an inner loop that, after every
execution, yields just one more neighbor (instead of the
entire set).

• The forward-backward greedy algorithm takes a different
tack, interleaving node addition (forward steps) with node
removal (backward steps). In particular, in every iteration,
the algorithm looks for nodes in the existing set that have
a very small marginal effect; these are removed. Note
that these nodes may have had a big effect in a previous

2

iteration when they were added, but the inclusion of
subsequent nodes shows them to not have enough of a
direct effect.

• Our third algorithm, namely the greedy algorithm with
pruning, first runs the greedy algorithm until it is unable
to add any more nodes to the neighborhood estimate.
Subsequently, it executes a node pruning step that iden-
tifies and removes all the incorrect neighbors that were
possibly included in the neighborhood estimate by the
greedy algorithm.

• For all these algorithms, we show that a simple node
selection step at the beginning followed by any one of
the recursive, forward-backward or greedy with pruning
algorithms can efficiently learn the structure of a large
class of graphical models even when they have small
cycles. We calculate the sample complexity and com-
putational (number of iterations) complexity for these
algorithms (with high probability) under non-degeneracy
and correlation decay assumptions (Theorems 3 and 4);

• Finally we present numerical results that indicate
tractable sample and computational complexity for loopy
graphs (diamond graph, grid).

B. Related Work

Several approaches have been taken so far to learn the graph
structure of MRF in presence of cycles. These can be broadly
divided into three classes – search based, convex-optimization
based, and greedy methods.

Search based algorithms like local independence test (LIT)
by Bresler et al. in [11] and the conditional variation distance
thresholding (CVDT) by Anandkumar et al. in [14] try to
find the smallest set of nodes through exhaustive search,
conditioned on which either a given node is independent of rest
of the nodes in the graph, or a pair of nodes are independent
of each other. These algorithms have a fairly good sample
complexity, but due to exhaustive search they have a high
computation complexity. Also to run these algorithms one
needs to know some additional information about the graph
structure. For example the local independence test requires the
knowledge of the maximum degree of the graph and the CVDT
algorithm requires the knowledge of the maximum size of the
local separator for the graph.

In case of Ising models a convex optimization based learn-
ing algorithm was proposed in [10] by Ravikumar et al. This
was further generalized for any pairwise graphical model in
[12]. These algorithms try to construct a pseudo likelihood
function using the parametric form of the distribution such
that it is convex and try to maximize it over the parameter
values. The optimized parameter values in effect reveal the
Markov graph structure. These algorithms have a very good
sample complexity of Ω(∆3 log p), where ∆ is the maximum
degree of a node and p is the total number of nodes. However
these algorithms require a strong incoherence assumption to
guarantee its success. In [18] Bento et al. showed that even for
a large class of Ising models the incoherence conditions are not
satisfied hence the convex optimization based algorithms fail.
They also show that in Ising models with weak long range

correlation, a simple low complexity thresholding algorithm
can correctly learn the graph.

Recently a greedy learning algorithm was proposed in [13]
which tries to find the minimum value of the conditional
entropy of a particular node in order to estimate its neighbor-
hood. We call this algorithm as Greedy(ε). It is an extension
of the Chow-Liu algorithm to graphs with cycles. It was shown
that for graphs with correlation decay and large girth this
exactly recovers the graph G. However it fails for graphs with
small cycles. A forward-backward greedy algorithm based on
convex optimization was also presented recently by Jalali et
al. in [19], which works for any pairwise graphical model.
This required milder assumption than in [10] and also gives a
better sample complexity.

This paper is organized as follows. First we review the
definition of a graphical model and the graphical model
learning problem in section II. The three greedy algorithms are
described in section III. Next we give sufficient conditions for
the success of the greedy algorithms in section IV. In section V
we present the main theorems showing the performance of the
recursive greedy, forward-backward and greedy with pruning
algorithms. We compare the performance of our algorithm
with other well known algorithms in section VI. In section VII
we present some simulation results. The proofs are presented
in the appendix.

II. BRIEF REVIEW: GRAPHICAL MODELS

In this section we briefly review the general graphical model
and the Ising model. Let X = (X1, X2, . . . , Xp) be a random
vector over a discrete set X p, where X = {1, 2, . . . ,m}.
XS = (Xi : i ∈ S) denote the random vector over the subset
S ⊆ {1, 2, . . . , p}. Let G = (V,E) denote a graph having p
nodes. Let ∆ be the maximum degree of the graph G and ∆i

be the degree of the ith node. An undirected graphical model
or Markov random field is a tuple M = (G,X) such that
each node in G corresponds to a particular random variable
in X . Moreover G captures the Markov dependence between
the variables Xi such that absence of an edge (i, j) implies
the conditional independence of variables Xi and Xj given all
the other variables.

For any node r ∈ V , let Nr denote the set of neighbors of r
in G. Then the distribution P(X) has the special Markov prop-
erty that for any node r, Xr is conditionally independent of
XV \{r}

⋃
Nr given XNr = {Xi : i ∈ Nr}, the neighborhood

of r, i.e.

P(Xr|XV \r) = P(Xr|XNr) (1)

Ising Model: An Ising model is a pairwise graphical model
where Xi take values in the set X = {−1, 1}. For this
paper we also consider the node potentials as zero (the zero
field Ising model). Hence the distribution take the following
simplified form.

PΘ(X = x) =
1

Z
exp

 ∑
(i,j)∈E

θijxixj

 (2)

3

Algorithm Graph family Sample complexity Computation complexity
Bresler et al. ∆ degree limited Ω

(
|X |4∆∆ log p

)
O

(
p2∆+1 log p

)
CVDT (∆, γ)− local separation Ω

(
|X |2∆(∆ + 2) log p

)
O

(
p∆+2

)
RWL ∆ degree limited, Ising model, incoherence Ω

(
∆3 log p

)
O

(
p4

)
Jalali et al. ∆ degree limited, pairwise graphical model, RSC Ω

(
∆2 log p

)
O

(
p4

)
Greedy ∆ degree limited, large girth, correlation decay Ω

(
|X |4∆ log p

)
O

(
p2∆

)
RecGreedy ∆ degree limited, correlation decay Ω

(
|X|2 log |X|/ε

ε5
log p

)
O

(
p2 + p∆ ξ

ε

)
FbGreedy ∆ degree limited, correlation decay Ω

(
|X|4 log |X|/((1−α)ε)

ε5(1−α)α4 log p

)
O

(
p2 + p ξ

(1−α)ε

)
GreedyP ∆ degree limited, correlation decay Ω

(
|X|2 log |X|/ε

ε5
log p

)
O

(
p2 + p

(ξ+1)
ε

)
Bento et al. ∆ degree limited, Ising model, correlation decay Ω

(
∆2

(1−2∆ tanh θ)2
log p

)
O

(
p2

)
TABLE I: Performance comparison between different discrete graphical model learning algorithms in literature. ∆ denotes the
maximum degree of the graph and p is the number of nodes. X is the alphabet set from which a random variable take its value
in the discrete graphical model. ξ represents the super-neighborhood size (described in Section IV-C). ε is a non-degeneracy
parameter (see Section IV). α is an input parameter to determine the elimination threshold in FbGreedy algorithm (see Section
III-B). θ is the edge weight parameter of the Ising model in [18].

where xi, xj ∈ {−1, 1}, θij ∈ R and Z is the normalizing
constant.

Graphical Model Selection: The graphical model selection
problem is as follows. Given n independent samples Sn =
{x(1), x(2), . . . , x(n)} from the distribution P(X), where each
x(i) is a p dimensional vector x(i) = (x

(i)
1 , x

(i)
2 , . . . , x

(i)
p) ∈

{1, . . . ,m}p, the problem is to estimate the Markov graph
G corresponding to the distribution P(X) by recovering the
correct edge set E. This problem is NP hard in general and has
been solved only under special assumptions on the graphical
model structure. In some cases a learning algorithm is able to
find the correct neighborhood of each node v ∈ V with a high
probability and hence recover the true topology of the graph.
Table I has a brief survey of the most relevant methods for
discrete graphical models.

We describe some notations. For a subset S ⊆ V , we
define P (xS) = P(XS = xS), xS ∈ X |S|. The empirical
distribution P̂ (X) is the distribution of X computed from the
samples. Let i ∈ V − S, the entropy of the random variable
Xi conditioned on XS is written as H(Xi|XS). The empirical
entropy calculated corresponding to the empirical distribution
P̂ is denoted by Ĥ . If P and Q are two probability measures
over a finite set Y, then the total variational distance between
them is given by, ||P −Q||TV = 1

2

∑
y∈Y |P (y)−Q(y)|.

III. GREEDY ALGORITHMS

In this section we describe three new greedy algorithms for
learning the structure of a MRF.
Main idea: The algorithms can be divided into two steps.
The first step common to all algorithms is a node pruning
step called super-neighborhood selection (described in detail
in Section IV). This step generates a collection of super-
neighborhoods S = {Si ⊆ V : Ni ⊆ Si and i /∈ Si ∀i ∈ V }
one for each i ∈ V , such that |Si| is small. This super-
neighborhood set S is the input to the second step of the
algorithms which is described next.

A. Recursive Greedy Algorithm
Idea: Consider first the simpler setting when we have

infinite samples (i.e. access to the true population quantity).
The simple naive greedy algorithm [13] adds nodes to the
neighborhood stopping when no further strict reduction in
conditional entropy is possible. This stopping will happen
when the true neighborhood is a subset of the estimated
neighborhood. Our key observation here is that the last node to
be added by the naive greedy algorithm will always be in the
true neighborhood, since inclusion of the last neighbor in the
conditioning set enables it to reach the minimum conditional
entropy. We leverage this observation by using the naive
greedy algorithm as an inner loop; at the end of every run
of this inner loop, we pick only the last node and add it to
the estimated neighborhood. The next inner loop starts with
this added node as an initial condition, and finds the next one.
Hence the algorithm discovers a neighbor in each run of the
innermost loop and finds all the neighbors of a given node i
in exactly ∆i iterations of the outer loop.

The above idea works as long as every neighbor has a
measurable effect on the conditional entropy, even when there
are several other variables in the conditioning. The algorithm
is RecGreedy(ε), pseudocode detailed below. It needs a non-
degeneracy parameter ε, which is the threshold for how much
effect each neighbor has on the conditional entropy.

B. Forward-Backward Greedy Algorithm

Our second algorithm takes a different approach to fix
the problem of spurious nodes added by the naive greedy
algorithm, by adding a backward step at every iteration that
prunes nodes it detects as being spurious. In particular, after
every forward step that adds a node to the estimated neigh-
borhood, the algorithm finds the node in this new estimated
neighborhood that has the smallest individual effect on the new
conditional entropy. If this is too small, this node is removed
from the estimated neighborhood.

The algorithm, FbGreedy(ε, α), is given in pseudocode. It
takes two input parameters beside the samples. The first is the
same non-degeneracy parameter ε as in the RecGreedy(ε)
algorithm. The second parameter α ∈ (0, 1) is utilized by

4

Algorithm 1 RecGreedy(ε)

1: Generate super-neighborhood S
2: for i = 1 to |V | do
3: N̂(i)← φ
4: iterate ← TRUE
5: while iterate do
6: T̂ (i)← N̂(i)
7: last ← 0
8: complete ← FALSE
9: while ! complete do

10: j = arg mink∈Si\T̂ (i) Ĥ(Xi|XT̂ (i), Xk)

11: if Ĥ(Xi|XT̂ (i), Xj) < Ĥ(Xi|XT̂ (i))−
ε
2 then

12: T̂ (i)← T̂ (i)
⋃
{j}

13: last ← j
14: else
15: if last ! = 0 then
16: N̂(i)← N̂(i)

⋃
{last}

17: else
18: iterate ← FALSE
19: end if
20: complete ← TRUE
21: end if
22: end while
23: end while
24: end for

the algorithm to determine the threshold of elimination in the
backward step. We will see later that this parameter also helps
to trade-off between the sample and computation complexity
of the FbGreedy(ε, α) algorithm. The algorithm stops when
there are no further forward or backward steps.

C. Greedy Algorithm with Pruning

The third algorithm overcomes the problem of non-neighbor
inclusion in the Greedy(ε) algorithm by adding a node prun-
ing step after the execution of the greedy algorithm (similar to
the backward step in FbGreedy(ε, α)). In this algorithm, after
running the Greedy(ε) algorithm, the pruning step declares
a neighbor node to be spurious if its removal from the
neighborhood estimate does not significantly increase the final
conditional entropy. These spurious nodes are removed to re-
sult in an updated neighborhood estimate for each node. In the
original Greedy(ε) algorithm this step was impractical since
the size of the estimated neighborhood could become very
large [13] in a general graph. However, our pre-processing
step (super-neighborhood selection, see Section IV) effectively
precludes this possibility and leads to an effcient and correct
algorithm.

The pseudocode of this greedy algorithm with node-pruning
– GreedyP (ε) – is given in Algorithm 3. In addition to
the samples, the input is again a non-degeneracy parameter
ε similar to RecGreedy(ε) and FbGreedy(ε, α) algorithms.

Algorithm 2 FbGreedy(ε, α)

1: Generate super-neighborhood S
2: for i = 1 to |V | do
3: N̂(i)← φ
4: added ← FALSE
5: complete ← FALSE
6: while ! complete do . Forward Step:
7: j = arg mink∈Si\N̂(i) Ĥ(Xi|XN̂(i), Xk)

8: if Ĥ(Xi|XN̂(i), Xj) < Ĥ(Xi|XN̂(i))−
ε
2 then

9: N̂(i)← N̂(i)
⋃
{j}

10: added ← TRUE
11: else
12: added ← FALSE
13: end if . Backward Step:
14: l = arg mink∈N̂(i) Ĥ(Xi|XN̂(i)\k)

15: if Ĥ(Xi|XN̂(i)\l)− Ĥ(Xi|XN̂(i)) <
αε
2 then

16: N̂(i)← N̂(i)\{l}
17: else
18: if ! added then
19: complete ← TRUE
20: end if
21: end if
22: end while
23: end for

Algorithm 3 GreedyP (ε)

1: Generate super-neighborhood S
2: for i = 1 to |V | do
3: Run Greedy(ε) within set Si
4: for j ∈ N̂(i) do
5: if Ĥ(Xi|XN̂(i)\j)− Ĥ(Xi|XN̂(i)) <

ε
2 then

6: N̂(i)← N̂(i)\j
7: end if
8: end for
9: end for

IV. SUFFICIENT CONDITIONS FOR MARKOV GRAPH
RECOVERY

In this section we describe the sufficient conditions which
guarantees that the RecGreedy(ε), FbGreedy(ε, α) and
GreedyP (ε) algorithms recover the correct Markov graph G.

A. Non-degeneracy

Our non-degeneracy assumption requires every neighbor
have a significant enough effect. Other graphical model learn-
ing algorithms require similar assumptions to ensure correct-
ness [10], [11], [13].

(A1) Non-degeneracy condition: Consider the graphical
model M = (G,X), where G = (V,E). Then for all i ∈ V
and A ⊂ V such that Ni 6⊂ A the following condition holds.
Let j ∈ Ni and j 6∈ A. Then there exists ε > 0 such that

H(Xi|XA, Xj) < H(Xi|XA)− ε (3)

5

Thus by adding a neighboring node to any conditioning set
that does not already contain it, the conditional entropy strictly
decreases by at least ε. Also the above condition together
with the local Markov property (1) implies that the conditional
entropy attains a unique minimum at H(Xi|XNi).

B. Correlation Decay

Correlation decay broadly means that the influence of a ran-
dom variable on the distribution of another gradually decreases
as the path distance between the corresponding nodes increase
in the graph G. In [18] Bento et al. showed that learning
graphical models become more difficult in absence of some
sort of correlation decay. Many different forms of correlation
decay have been assumed in MRF learning algorithms [11],
[13], [14]. We assume a weak form of correlation decay similar
to the weak spatial mixing assumption in [20]. First we define
the following quantity.

Definition 1 Consider the graphical model M = (G,X).
Let i, j ∈ V . Define φi(j) = maxx 6=x′ ||P (Xi|Xj = x) −
P (Xi|Xj = x′)||TV . The corresponding function calculated
from the empirical distribution P̂ is denoted as φ̂i(j).

φi(j) denotes the maximum variation distance between the
conditional distribution of Xi conditioned on two different
values of Xj . Now the correlation decay assumption is the
following.

(A2) Correlation decay: For the graphical model M =
(G,X) there exists a monotonic decreasing function f : Z→
R such that for any i, j ∈ V

φi(j) < f(d(i, j)) (4)

where d(i, j) is the graph distance between nodes i and j.
It can be shown that the correlation decay assumption in [13]
implies (4) for any monotonic decreasing function f(.) (scaled
appropriately). Hence this is a weaker assumption. Next we
give an example when the decay function f(.) is exponential.

Example 1 (Exponential correlation decay)

It can be shown that in any graphical model M = (G,X) if
Dobrushin’s condition holds then M exhibits an exponential
correlation decay. First we restate the definition of influence
coefficient from [15], [16].

Definition 2 Influence coefficient: For any i, j ∈ V the
influence coefficient of node j on node i is

Cij = max
y,z∈X |V |−1

yk=zk ∀k 6=j

||P (Xi|XV \i = y)− P (Xi|XV \i = z)||TV

Note that due to the Markov property of the graph Cij = 0
for all j /∈ Ni. Dobrushin’s condition [17], [21] is the
following.
Dobrushin’s condition: Let Cij be the influence coefficient
of node j on node i. Then Dobrushin’s condition require

γ = sup
i∈V

∑
j∈V

Cij

 < 1 (5)

In an Ising model (2) with maximum degree ∆ and θij = θ
the Dobrushin’s condition corresponds to γ = ∆ tanh 2θ < 1
[21]. The following lemma connects this to assumption (A2).

Lemma 1 ([21]) Suppose Dobrushin’s condition holds for a
Markov random field. Then,

φi(j) ≤
γd(i,j)

1− γ
where γ is given by (5).

Hence in this case f(x) = γx

1−γ is an exponentially decaying
function.

C. Super-Neighborhood Selection

In this section we describe a method to choose a super-
neighborhood Si for each node i ∈ V in the first step
of RecGreedy(ε), FbGreedy(ε, α) and GreedyP (ε) algo-
rithms when there is correlation decay. Recall that a super-
neighborhood set Si for any node i is a subset of nodes which
contain the true neighborhood Ni.

Before we describe the procedure, we motivate the need
for a super-neighborhood selection method. First, observe
that if we run Algorithm 1, 2, and 3 with Si = V for
all i ∈ V and with exact distribution P (X) known, under
the non-degeneracy assumption (A1) the algorithm correctly
outputs the true neighborhood Ni with a proper ε. However
the problem is that for an arbitrary graphical model (or any
graphical model with the super-neighborhood set to be very
large), the size of the conditioning set T̂ (i) in RecGreedy(ε)
or N̂(i) in FbGreedy(ε, α) and GreedyP (ε) can also become
very large. This implies that the number of samples required
to get a good estimate of the conditional entropy H(Xi|XA)
is Ω(|X ||A|+1) will be exponentially large (a good estimate
is needed to ensure Algorithm 1, 2 and 3 give the correct
graph G with a high probability). In order to mitigate this
problem we need to appropriately bound the size of the set
T̂ (i), N̂(i). To do this we choose a super-neighborhood Si
such that supi∈V |Si| := ξ and ξ = O(log p). Then the size
of the conditioning set never exceeds ξ and the number of
samples needed by the algorithm (sample complexity) will be
at most polynomial in p.

The problem of super-neighborhood selection becomes eas-
ier under the correlation decay assumption (A2). Let β be such
that,

min
i∈V,j∈Ni

φi(j) = β (6)

The super-neighborhood is then selected as follows.

Si = {j ∈ V |φ̂i(j) ≥
β

2
} (7)

Remark: Note that there may be other ways to generate
a super-neighborhood based on domain knowledge/structural

6

properties of the system (e.g. in social networks, weather
forecasting). All that is needed for our algorithms is to have
a super-neighborhood of small size.

Definition 3 (Super-neighborhood radius) The super-
neighborhood radius R is defined as

R = min{x ∈ Z|f(x) < β/2} (8)

We assume that R exists and R does not grow with p. i.e.,
R = O(1).

Now with correlation decay (A2) this super-neighborhood
selection procedure (7) is successful with a high probability
with only Ω(log p) samples, where by success we mean Si
will contain the true neighborhood Ni and ξ = maxi∈V |Si|
is small. This is shown by the following lemmas. We de-
fine the minimum marginal probability Pmin as Pmin =
mini∈V,xi∈X P (Xi = xi).

Lemma 2 Consider a graphical model M = (G,X) with
distribution P (X), X ∈ X p. Let 0 < δ1 < 1. Then if the
number of i.i.d. samples

n >
32|X |4

β2P 2
min

[
2 log |X |p+ log

2

δ1

]
we have with probability at least 1− δ1

|P (Xi|Xj)− P̂ (Xi|Xj)| <
β

4|X |
(9)

for all i, j ∈ V , where β is given by (6).

Lemma 3 Let a graphical model M = (G,X) satisfy as-
sumption (A2). Let 0 < δ1 < 1. Then with probability greater
than 1− δ1, Ni ⊆ Si for all i ∈ V when the number of i.i.d.
samples n = Ω(log p

δ1
).

Lemma 4 Consider a graphical model M = (G,X) with
maximum degree ∆ satisfying assumption (A2) with decay
function f(.). Let 0 < δ2 < 1. Then with probability greater
than 1 − δ2 we have |Si| < ∆i∆

R−1 when the number of
samples n = Ω(log p

δ2
), where R is given by (8).

Lemmas 2, 3, 4 follow from Azuma’s concentration inequal-
ity as presented in Appendix. Now we try to characterize
the maximum super-neighborhood size ξ in bounded degree
graphs with exponential correlation decay and in Ising models.

Theorem 1 Consider a graphical model M = (G,X) with
maximum degree ∆ satisfying Dobrushin’s condition (5). Let
0 < δ4 < 1. Then with probability greater than 1 − δ4 we
have ξ < ∆log 2

(1−γ)β
/ log 1

γ when the number of samples n =
Ω(log p

δ4
), where β is given by equation (6).

Theorem 2 Consider a zero field Ising model with equal edge
weights θ, distribution given by equation (2). Let maximum de-
gree ∆ satisfy ∆ tanh 2θ < 1. Let 0 < δ5 < 1. When the num-
ber of samples n = Ω(log p

δ5
), with probability greater than

1− δ5 we have ξ < ∆log((1−∆ tanh 2θ) tanh θ/2)/ log(∆ tanh 2θ).

Theorems 1 and 2 mainly follow from Lemma 1 and 4.
Detailed proof is given in Appendix. A super-neighborhood
selection process for graphs with exponential correlation de-
cay is available in [11]. However the super-neighborhood
selection in our setting applies to graphs exhibiting a weaker
form of correlation decay. Further, unlike in [11] where the
main purpose for super-neighborhood selection was to reduce
the computational complexity of the search based algorithm,
in our case super-neighborhood selection reduces both the
sample and computational complexity of the RecGreedy(ε),
FbGreedy(ε, α) and GreedyP (ε) algorithms.

V. MAIN RESULT

In this section we state our main result showing the
performance of the RecGreedy(ε), FbGreedy(ε, α) and
GreedyP (ε) algorithms. First we state some useful lemmas.
We restate the first lemma from [13], [23] that will be used
to show the concentration of the empirical entropy Ĥ with
samples.

Lemma 5 Let P and Q be two discrete distributions over a
finite set X such that ||P −Q||TV ≤ 1

4 . Then,

|H(P)−H(Q)| ≤ 2||P −Q||TV log
|X |

2||P −Q||TV
The following two lemmas bound the number of steps in

RecGreedy(ε), FbGreedy(ε, α) and GreedyP (ε) algorithms
which also guarantees their convergence.

Lemma 6 The number of greedy steps in each recursion of
the RecGreedy(ε) and in GreedyP (ε) algorithm is less than
2 log |X |

ε .

Proof: In each step the conditional entropy is reduced
by an amount at least ε/2. Since the maximum reduction in
entropy possible is Ĥ(Xi) ≤ log |X |, the number of steps is
upper bounded by 2 log |X |

ε .

Note that the GreedyP (ε) algorithm will take at least ∆
steps to include all the neighbors in the conditioning set. Hence
2 log |X |

ε ≥ ∆.

Lemma 7 The number of steps in the FbGreedy(ε, α) is
upper bounded by 4 log |X |

ε(1−α) .

Proof: Note that as long as the forward step is active
(which occurs till all neighbors are included in the condition-
ing set N̂(i)), in each step the conditional entropy reduces
by at least (1 − α)ε/2. Hence all the neighbors are included
within 2 log |X |

(1−α)ε steps. The number of non-neighbors included

in the conditioning set is also bounded by 2 log |X |
(1−α)ε . Thus it

will take at most the same number backward steps to remove
the non-neighbors. Hence the total number of steps is at most
4 log |X |
(1−α)ε .

We now state our main theorem showing the performance
of Algorithms 1, 2 and 3.

7

Theorem 3 Consider a MRF over a graph G with maximum
degree ∆, having a distribution P (X).
1) Correctness (non-random): Suppose (A1) holds and the
RecGreedy(ε), FbGreedy(ε, α) and GreedyP (ε) algorithms
have access to the true conditional entropies therein, then they
correctly estimate the graph G.
2) Sample complexity: Suppose (A1) holds, super-
neighborhoods Si are given and super-neighborhood
size |Si| < ξ, for all i ∈ V . Let 0 < δ < 1.

• When the number of samples n = Ω
(
|X |2 log |X|/ε

ε5 log p
δ

)
the RecGreedy(ε) correctly estimates G with probability
greater than 1− δ.

• When the number of samples n =

Ω
(
|X |4 log |X|/((1−α)ε)

ε5(1−α)α4 log p
δ

)
the FbGreedy(ε, α)

correctly estimates G with probability greater than 1−δ,
for 0 < α < 1.

• When the number of samples n = Ω
(
|X |2 log |X|/ε

ε5 log p
δ

)
the GreedyP (ε) correctly estimates G with probability
greater than 1− δ.

The proof of correctness with true conditional entropies
known is straightforward under non-degenerate assumption
(A1). The proof in presence of samples is based on Lemma
8 similar to Lemma 2 in [13] showing the concentration
of empirical conditional entropy, which is critical for the
success of RecGreedy(ε), FbGreedy(ε, α) and GreedyP (ε)
algorithms. We show that when super-neighborhoods Si are
given and |Si| ≤ ξ for all i ∈ V , with sufficiently many
samples the empirical distributions and hence the empirical
conditional entropies also concentrate around their true values
with a high probability. This will ensure that algorithms 1, 2
and 3 correctly recover the Markov graph G. The complete
proof is presented in Appendix.

Lemma 8 Consider a graphical model M = (G,X) with
distribution P (X). Let 0 < δ3 < 1. If the number of samples

n >
8|X |2(s+2)

ζ4

[
(s+ 1) log 2p|X |+ log

1

δ3

]
then with probability at least 1− δ3

|Ĥ(Xi|XS)−H(Xi|XS)| < ζ

for any S ⊂ V such that |S| ≤ s.

Lemma 8 follows from Lemma 5 and Azuma’s inequal-
ity. Although the sample complexities of RecGreedy(ε),
FbGreedy(ε, α) and GreedyP (ε) algorithms are slightly
more than other non-greedy algorithms [10], [11], [14], the
main appeal of these greedy algorithms lie in their low
computation complexity. The following theorem characterizes
the computation complexity of Algorithms 1, 2 and 3. When
calculating the run-time, each arithmetic operation and com-
parison is counted as an unit-time operation. For example to
execute line 10 in Algorithm 1, each comparison takes an unit-
time and each entropy calculation takes O(n) time (since there
are n samples using which the empirical conditional entropy

is calculated). Since there are at most |Si| ≤ ξ comparisons
the total time required to execute this line is O(nξ).

Theorem 4 (Run-time) Consider a graphical model M =
(G,X), with maximum degree ∆, satisfying assumptions (A1)
and |Si| < ξ, for all i ∈ V . Then the second step has an
expected run-time of,
• O(δpξ3n + (1 − δ)pε∆ξn) for the RecGreedy(ε) algo-

rithm.
• O(p

(1−α)εξn) for the FbGreedy(ε, α) algorithm.
• O(δpξ(ξ+ 1)n+ (1− δ)pε (ξ+ 1)n) for the GreedyP (ε)

algorithm.

The proofs of Theorem 4 are given in Appendix.
Remark: Suppose that 4 log |X |

ε(1−α) < ξ. Then if we take α < ∆−1
∆

the FbGreedy(ε, α) has a better run time guarantee than the
RecGreedy(ε) algorithm for small δ. But when ∆ξ < 2 log |X |

ε(1−α)

then the RecGreedy(ε) algorithm has a better guarantee.
Also when α < 1

ξ+1 , F bGreedy(ε, α) has a better runtime
guarantee than GreedyP (ε) algorithm. Note that the super-
neighborhood selection step in Equation (7) has an additional
complexity of O(p2).

VI. PERFORMANCE COMPARISON

In this section we compare the performance of the
RecGreedy(ε), FbGreedy(ε, α) and GreedyP (ε) algorithms
with other graphical model learning algorithms.

A. Comparison with Greedy(ε) algorithm:

The RecGreedy(ε), FbGreedy(ε, α) and GreedyP (ε) al-
gorithms are strictly better than the Greedy(ε) algorithm in
[13]. This is because Algorithms 1, 2 and 3 always find the cor-
rect graph G when the Greedy(ε) finds the correct graph, but
they are applicable to a wider class of graphical models since
they do not require the assumption of large girth to guarantee
its success. Further the correlation decay assumption (A2) in
this paper is weaker than the assumption in [13]. Note that
RecGreedy(ε), FbGreedy(ε, α) and GreedyP (ε) algorithms
use the Greedy(ε) algorithm as an intermediate step. Hence
when Greedy(ε) finds the true neighborhood Ni of node i,
RecGreedy(ε) algorithm will find the correct neighborhood in
each of the recursive steps and FbGreedy(ε, α), GreedyP (ε)
algorithms output the correct neighborhood directly without
having to utilize any of the backward steps or the pruning
step respectively. Hence RecGreedy(ε), FbGreedy(ε, α) and
GreedyP (ε) algorithms also succeed in finding the true graph
G. We now demonstrate a clear example of a graph where
Greedy(ε) fails to recover the true graph but the Algorithms
1, 2 and 3 are successful. This example is also presented in
[13]. Consider an Ising model on the graph in Figure 2. We
have the following proposition.

Proposition 1 Consider an Ising model with V =
{0, 1, . . . , D,D+ 1} and E = {(0, i), (i,D+ 1) ∀i : 1 ≤ i ≤
D} with a distribution function P (x) = 1

Z

∏
(ij)∈E e

θxixj ,
Xi ∈ {1,−1}. Then with D > 2θ

log cosh(2θ) + 1 we have

8

0 D+1

1

2

D

D-1

Fig. 2: An example of a diamond network with D + 2
nodes and maximum degree D where Greedy(ε) fails but
RecGreedy(ε), FbGreedy(ε, α) and GreedyP (ε) algorithms
correctly recover the true graph.

H(X0|XD+1) < H(X0|X1)

The proof follows from straightforward calculation (see
Appendix). Hence for the Ising model considered above (Fig-
ure 2) with D > 2θ

log cosh(2θ) + 1 the Greedy(ε) incorrectly
includes node D+ 1 in the neighborhood set in the first step.
However with an appropriate ε the MRF satisfies assumption
(A1). Hence by taking Si = V , Theorem 3 ensures that the
RecGreedy(ε), FbGreedy(ε, α) and GreedyP (ε) algorithms
correctly estimate the graph G.

B. Comparison with search based algorithms:

Search based graphical model learning algorithms like the
Local Independence Test (LIT) by Bresler et al. [11] and
the Conditional Variation Distance Thresholding (CVDT) by
Anandkumar et al. [14] generally have good sample com-
plexity, but high computation complexity. As we will see the
RecGreedy(ε), FbGreedy(ε, α) and GreedyP (ε) algorithms
have slightly more sample complexity but significantly lower
computational complexity than the search based algorithms.
Moreover to run the search based algorithms one needs to
know the maximum degree ∆ for LIT and the maximum
size of the separator η for the CVDT algorithm. However the
greedy algorithms can be run without knowing the maximum
degree of the graph.

For bounded degree graphs the LIT algorithm has a sample
complexity of Ω(|X |4∆∆ log 2p

δ). Without any assumption on
the maximum size of the separator, for bounded degree graphs
the CVDT algorithm also has a similar sample complexity of
Ω(|X |2∆(∆ + 2) log p

δ). Note that the quantity Pmin in the
sample complexity expression for CVDT algorithm (Theorem
2 in [14]) is the minimum probability of P (XS = xS) where
|S| ≤ η+1. This scales with ∆ as Pmin ≤ 1

|X |η+1 . For general
degree bounded graphs we have η = ∆. The sample com-
plexity for RecGreedy(ε), GreedyP (ε) and FbGreedy(ε, α)

algorithms is slightly higher at Ω
(
|X |2 log |X|/ε

ε5 log p
δ

)
and

Ω
(
|X |4 log |X|/((1−α)ε)

ε5(1−α)α4 log p
δ

)
respectively (since 2 log |X |

ε >

∆). However the computation complexity of the LIT al-
gorithm is O(p2∆+1 log p) and that of the CVDT al-
gorithm is O(|X |∆p∆+2n), which is much larger that
O(pε∆ξn) for RecGreedy(ε) algorithm, O(p

(1−α)εξn) for the
FbGreedy(ε, α) algorithm and O(pε (ξ+1)n) for GreedyP (ε)
algorithm (since ξ = O(log p) and ξ < ∆R when (A2) holds).
Recall however that using the correlation decay property and
super-neighborhood selection, the computation complexity of
search based algorithms can be decreased. In [11], Bresler
et al. showed that by assuming exponential correlation decay
(with parameter µ) and a super-neighborhood selection, the
LIT algorithm has a run-time of O(p∆

∆ log(4/β)
µ n). We have

the following proposition for the CVDT algorithm.

Proposition 2 Consider a graphical model M = (G,X),
where G = (V,E) have maximum degree ∆, satisfying
correlation decay (A2). Then by super-neighborhood se-
lection the CVDT algorithm has an expected run-time of
O(p∆(∆+1)R|X |∆n), when the super-neighborhood is chosen
as (7).

However with correlation decay (A2) the run-time of Al-
gorithms 1, 2 and 3 are O(pε∆R+1n), O(p

(1−α)ε∆
Rn) and

O(pε∆Rn) respectively still smaller than the LIT and CVDT
algorithms.

C. Comparison with convex optimization based algorithms:

In [10] Ravikumar et al. presented a convex optimiza-
tion based learning algorithm for Ising models, which we
have referred as the RWL algorithm. It was later extended
for any pairwise graphical model by Jalali et al. in [12].
These algorithms assume extra incoherence or restricted strong
convexity conditions hold, in which case they have a low
sample complexity of Ω(∆3 log p). However these algorithms
have a computation complexity of O(p4) higher than the
RecGreedy(ε), FbGreedy(ε, α) and GreedyP (ε) algorithms.
Moreover the greedy algorithms we propose are applicable for
a wider class of graphical models. Finally these optimization
based algorithms require a strong incoherence property to
guarantee its success; conditions which may not hold even for
a large class of Ising models as shown by Bento et al. in [18].
They also prove that the RWL algorithm fails in a diamond
network (Figure 2) for a large enough degree, whenever there
is a strong correlation between non-neighbors, our algorithm
successfully recovers the correct graph in such scenarios. In
our simulations later we will see that the failure of the RWL
algorithm for the diamond network exactly corresponds to the
case ∆ > Dth = 2θ

log cosh(2θ) + 1, which is also when the
Greedy(ε) fails. In [18] the authors prove that for a given
∆ the RWL algorithm fails when θ < θT and this critical
threshold θT behaves like 1

∆ . Now if we define

θ0 = max{θ :
2θ

log cosh (2θ)
+ 1 ≥ ∆} (10)

Then from our simulations for all θ < θ0 the RWL
algorithm fails. Also this θ0 is almost equal to 1

∆ . Hence we
make the following conjecture.

9

Conjecture 1 The RWL algorithm fails to recover the correct
graph in the diamond network exactly when θ < θ0. θ0 given
by equation (10).

In [19] Jalali et al. presented a forward-backward algorithm
based on convex optimization for learning pairwise graphical
models (as opposed to general graphical models in this paper).
It has even lower sample complexity of Ω(∆2 log p) and works
under slightly milder assumptions than the RWL algorithm.

D. Which greedy algorithm should we use?

From the above performance comparison we can say that
RecGreedy(ε), FbGreedy(ε, α) and GreedyP (ε) algorithms
can be used to find the graph G efficiently when the super-
neighborhood size is small (ξ = O(log n)) in discrete graph-
ical models with correlation decay. A natural question to ask
then is which among these three greedy algorithms should
we use? The answer depends on the particular application.
In terms of sample complexity theoretically FbGreedy(ε, α)
has a higher sample complexity than RecGreedy(ε) and
GreedyP (ε) algorithms. However the difference is not much
for a constant α and in our experiments we see all the
three greedy algorithms have similar sample complexities
(see Section VII). The theoretical guarantee on computation
complexity also varies depending on parameters α,∆ and ξ.
However from our experiments we see RecGreedy(ε) has
much higher run-time than FbGreedy(ε, α) and GreedyP (ε)
algorithms which show similar run-times. We conclude that
in practical applications it is better to use FbGreedy(ε, α)
and GreedyP (ε) algorithms than the RecGreedy(ε) algo-
rithm. Now if we know the bound on maximum degree ∆,
after running the Greedy(ε) algorithm if the size of the
estimated neighborhood set N̂(i) is considerably higher than
∆ this indicates there are large number of non-neighbors.
In such cases GreedyP (ε) may take a considerable time to
remove these non-neighbors during the node pruning step and
FbGreedy(ε, α) algorithm could have removed much of these
nodes in earlier iterations, when the size of the conditioning
set was still small, resulting in less computation. This calls for
the use of FbGreedy(ε, α) algorithm in these cases. Similarly
when size of the set N̂(i) returned by the Greedy(ε) is
comparable or slightly greater than ∆ it will be more efficient
to use the GreedyP (ε) algorithm (for example in the diamond
network and grid network as shown in Section VII).

VII. SIMULATION RESULTS

In this section we present some simulation results character-
izing the performance of RecGreedy(ε), FbGreedy(ε, α) and
GreedyP (ε) algorithms. We compare the performance with
the Greedy(ε) algorithm [13] and the logistic regression based
RWL algorithm [10] in Ising models. We consider two graphs,
a 4×4 square grid (Figure 3) and the diamond network (Figure
2). In each case we consider an Ising model on the graphs.
For the 4× 4 grid we take the edge weights θ ∈ {.25,−.25},
generated randomly. For the diamond network we take all
equal edge weights θ = .25 or .5. Independent and identically
distributed samples are generated from the models using Gibbs

sampling and the algorithms are run with increasing number
of samples. We implement the RWL algorithm using `1−
logistic regression solver by Koh et al. [24] and our algorithms
using MATLAB. The parameter ε for the greedy algorithms
and the `1 regularization parameter λ for the RWL algorithm
are chosen through cross validation which gives the least
estimation error on a training dataset. From Theorem 3 and
4 we see that increasing α reduces the sample complexity of
FbGreedy(ε, α) algorithm but increases its run-time and vice
versa. Hence for practical applications α can be chosen to
trade-off between sample complexity and run-time to best suit
the application requirements. In our experiments α was taken
as .9.

Fig. 3: A 4x4 grid with ∆ = 4 and p = 16 used for
the simulation of the RecGreedy(ε), FbGreedy(ε, α) and
GreedyP (ε) algorithms.

First we show that for the diamond network (Figure 2)
whenever D > Dth = 2θ

log cosh(2θ) +1 the RWL algorithm fails
to recover the correct graph. We run the RWL algorithm in
diamond network with increasing maximum degree D keeping
θ fixed. We take θ = .25 for which Dth = 2×.25

log cosh(2×.25) +1 =
5.16. The performance is shown in Figure 4. We clearly see
that the failure of the RWL algorithm in diamond network
corresponds exactly to the case when D > Dth. The RWL
algorithm fails since it predicts a false edge between nodes 0
and D + 1. This is surprising since this is also the condition
in Proposition 1 which describes the case when Greedy(ε)
algorithm fails for the diamond network due to the same reason
of estimating a false edge. In some sense D = Dth marks the
transition between weak and strong correlation between non-
neighbors in the diamond network, and both Greedy(ε) and
RWL algorithms fail whenever there is a strong correlation.
However see next that our greedy Algorithms 1, 2 and 3
succeed even when D > Dth.

Figure 1 shows the performance of the various algorithms
in the case of the diamond network with p = 6, θ = .5
and D = 4 > Dth = 3.3. The Greedy(ε) and RWL algo-
rithms are unable to recover the graph but the RecGreedy(ε),
FbGreedy(ε, α) and GreedyP (ε) recover the true graph
G, they also show the same error performance. However
Figure 5 shows that GreedyP (ε) has a better runtime than
the RecGreedy(ε) and FbGreedy(ε, α) algorithms for this
diamond network.

Figure 6 shows the performance of the different algorithms
for a 4 × 4 grid network. We see that for this network
the RWL algorithm shows a better sample complexity than

10

Fig. 4: Performance of the RWL algorithm in diamond network
of Figure 2 for varying maximum degree with θ = .25 and
Dth = 5. RWL fails whenever D > Dth.

Fig. 5: Figure showing the average runtime performance of
RecGreedy(ε), FbGreedy(ε, α) and GreedyP (ε) algorithms
for the diamond network with p = 6, ∆ = 4, for varying
sample size.

RecGreedy(ε), FbGreedy(ε, α) or GreedyP (ε) as predicted
by the performance analysis. This network exhibits a weak
correlation among non-neighbors, hence the Greedy(ε) is
able to correctly recover the graph, which obviously implies
that the RecGreedy(ε), FbGreedy(ε, α) and GreedyP (ε)
also correctly recovers the graph, and all have the same
performance.

Figure 7 shows that the GreedyP (ε) algorithm also has the
best runtime in the 4× 4 grid network among the new greedy
algorithms.

REFERENCES

[1] A. Ray, S. Sanghavi and S. Shakkottai, “Greedy Learning of Graphical
Models with Small Girth”, Proceedings of the 50th Annual Allerton
Conference on Communication, Control, and Computing, October 2012.

[2] E. Ising, “Beitrag zur theorie der ferromagnetismus”, Zeitschrift fur
Physik 31, pp. 253–258, 1925.

[3] C. D. Manning and H. Schutze, “Foundations of Statistical Natural
Language Processing”, MIT Press, Cambridge, MA. MR1722790, 1999.

[4] G. Cross and A. Jain, “Markov random field texture models”, IEEE
Trans. PAMI, 5, pp. 25–39, 1983.

[5] M. Hassner and J. Sklansky, “The use of Markov random fields as
models of texture”, Comp. Graphics Image Proc. 12, pp. 357–370, 1980.

Fig. 6: Performance comparison of RecGreedy(ε),
FbGreedy(ε, α), GreedyP (ε), Greedy(ε) and RWL
algorithms in a 4 × 4 grid with p = 16, ∆ = 4
for varying sample size. The error event is defined as
E = {∃i ∈ V |N̂i 6= Ni}. All three greedy algorithms have
the same error performance for this graph.

Fig. 7: Figure showing the average runtime performance of
RecGreedy(ε), FbGreedy(ε, α) and GreedyP (ε) algorithms
for the 4× 4 grid network with p = 16, ∆ = 4, with varying
sample size.

[6] S. Wasserman and P. Pattison “Logit models and logistic regressions
for social networks 1. An introduction to Markov graphs and p∗”,
Psychometrika 61, pp. 401-425, 1996.

[7] A. Dobra, C. Hans, B. Jones, J. R. Nevins, G. Yao, and M. West, “Sparse
graphical models for exploring gene expression data”, J. Multiv. Anal.
90, 196–212, 2004.

[8] D. Karger, N. Srebro, “Learning Markov networks: maximum bounded
tree-width graphs”, Symposium on Discrete Algorithms, pp. 392-401,
2001.

[9] C. Chow, C. Liu, “Approximating Discrete Probability Distributions with
Dependence Trees”, IEEE Trans. on Information Theory, vol. 14, pp.
462-467, 1968.

[10] P. Ravikumar, M. Wainwright, J. D. Lafferty, “ High-Dimensional Ising
Model Selection Using `1-Regularized Logistic Regression” The Annals
of Statistics, vol. 38, no. 3, pp. 1287-1319, 2010.

[11] G. Bresler, E. Mossel and A. Sly, “ Reconstruction of Markov Random
Field from Samples: Some Observations and Algorithms” Proceedings
of the 11th international workshop, APPROX 2008, and 12th interna-
tional workshop, RANDOM 2008, pp. 343-356.

[12] A. Jalali, P. Ravikumar, V. Vasuki and S. Sanghavi, “On Learning
Discrete Graphical Models using Group-Sparse Regularization”, Inter-
national Conference on Artificial Intelligence and Statistics (AISTATS),
2011.

[13] P. Netrapalli, S. Banerjee, S. Sanghavi and S. Shakkottai, “Greedy Learn-

11

ing of Markov Network Structure”, 48th Annual Allerton Conference,
2010.

[14] A. Anandkumar, V. Y. F Tan and A. S. Willsky, “High-Dimensional
Structure Learning of Ising Models: Local Separation Criterion”,
http://arxiv.org/abs/1107.1736, July 2011.

[15] A. Anandkumar, J. E. Yukich, and A. Willsky, “Scaling Laws for
Random Spatial Graphical Models”, In Proc. of IEEE ISIT, Austin, USA,
June 2010.

[16] S. Winkler, S. Tatikonda, “Criteria for Rapid Mixing of Gibbs Samplers
and Uniqueness of Gibbs Measures”, Allerton Conf. on Communication,
Control, and Computing, 2006.

[17] R. L. Dobrushin, “The Problem of Uniqueness of a Gibbsian Random
Field and the Problem of Phase Transitions”, Functional Analysis and
its Applications, vol. 2, pp. 302312, 1968.

[18] J. Bento and A. Montanari, “On the trade-off between com-
plexity and correlation decay in structural learning algorithms”,
http://arxiv.org/abs/1110.1769, 2011.

[19] A. Jalali, C. Johnson, P. Ravikumar, “On Learning Discrete Graphical
Models using Greedy Methods”, In Advances in Neural Information
Processing Systems (NIPS) 24, 2011.

[20] D. Weitz, “Counting independent sets up to the tree threshold”, in Proc.
of ACM symp. on Theory of Computing, pp. 140 – 149, 2006.

[21] A. Montanari, “Lecture Notes: Inference in Graphical Models”, http://
www.stanford.edu/∼montanar/TEACHING/Stat375/stat375.html, 2011.

[22] R. Griffiths, “Correlations in Ising ferromagnets”, Journal of Mathemat-
ical Physics, Vol. 8, 478, 1967.

[23] T. Cover and J. Thomas, “Elements of Information Theory”. John Wiley
and Sons, Inc., 2006.

[24] http://www.stanford.edu/∼boyd/l1 logreg/.

APPENDIX

In this section we present the proofs of Lemma 2, 3, 4, 8,
Theorem 1, 2, 3, 4 and Proposition 1, 2.

Lemma 2
Proof: Using Azuma’s inequality we get for any xi, xj

P (|P̂ (xi, xj)− P (xi, xj)| > γ1) ≤ 2 exp(−2γ2
1n)

≤ δ1
|X |2p2

(say)

Taking union bound over all xi, xj ∈ X and i, j ∈ V we
get with probability at least 1− δ1

|P̂ (xi, xj)− P (xi, xj)| < γ1 ∀xi, xj

Taking γ1 = βPmin
8|X |2 we get with probability at least 1− δ1

|P̂ (xi|xj)− P (xi|xj)| ≤
|P̂ (xi, xj)− P (xi, xj)|

P (xj)

+
|P̂ (xj)− P (xj)|

P (xj)

≤ γ1

Pmin
+
|X |γ1

Pmin
≤ 2|X |γ1

Pmin

=
β

4|X |

Lemma 3
Proof: From Lemma 2 it is clear that if number of

samples n = O(log p
δ1

) then with probability at least 1 − δ1
equation (9) holds for all i, j ∈ V . Then for any i ∈ V, j ∈ Ni
with probability at least 1− δ1 we have

φ̂i(j) = max
xj ,x′j

||P̂ (Xi|Xj = xj)− P̂ (Xi|Xj = x′j)||TV

= max
xj ,x′j

1

2

∑
xi∈X

|P̂ (xi|xj)− P̂ (xi|x′j)|

≥ β − |X |
2

β

2|X |

>
β

2

Equation (7) implies node j is included in the super-
neighborhood Si. Hence for all i ∈ V , Ni ⊆ Si with
probability greater than 1− δ1.

Lemma 4
Proof: Let µ = β

2 − f(R+ 1). From Lemma 2 we know
that for n > 32|X |4

µ2P 2
min

[
2 log |X |p+ log 2

δ2

]
we have

|P (Xi|Xj)− P̂ (Xi|Xj)| <
µ

4|X |
for all i, j ∈ V .
Then for any j ∈ V such that d(i, j) ≥ R+ 1 we have,

φ̂i(j) = max
xj ,x′j

||P̂ (Xi|Xj = xj)− P̂ (Xi|Xj = x′j)||TV

= max
xj ,x′j

1

2

∑
xi∈X

|P̂ (xi|xj)− P̂ (xi|x′j)|

≤ φi(j) + 2
|X |
2

µ

4|X |

< f(R+ 1) +
µ

4
<
β

2

Hence with the number of samples n = O(log p
δ2

) with
probability greater than 1 − δ2 all nodes j ∈ V such that
d(i, j) ≥ R+1 are not included in Si. Hence |Si| < ∆i∆

R−1

with probability greater than 1− δ2.

Theorem 1
Proof: From Lemma 1 we know that for any graphical

model satisfying Dobrushin’s condition the correlation decay
function is exponential, f(x) = γx

1−γ . Now from Lemma
4 we know that with n = Ω(log p

δ4
) samples the super-

neighborhood size is bounded by ξ < ∆R with high probabil-
ity. For exponential correlation decay the super-neighborhood
radius can be bounded by R < log 2

(1−γ)β / log 1
γ . The theorem

follows.

Theorem 2
Proof: It is easy to show that in a zero field Ising

model with maximum degree ∆ and edge weights θ the
Dobrushin’s condition is satisfied for γ = ∆ tanh 2θ < 1.
Hence such Ising model will show exponential correlation
decay and from Theorem 1 with n = Ω(log p

δ5
) samples

with high probability the super-neighborhood size will be
bounded by ξ < ∆log 2

(1−γ)β
/ log 1

γ . Now as shown in [18]
the correlation between neighbors Xi and Xj can be bounded
by Cij = E[XiXj] ≥ tanh θ. However from symmetry of the

http://www.stanford.edu/~montanar/TEACHING/Stat375/stat375.html
http://www.stanford.edu/~montanar/TEACHING/Stat375/stat375.html
http://www.stanford.edu/~boyd/l1_logreg/

12

partition function as argued in [22] we have P (Xi = 1, Xj =
−1) = P (Xi = −1, Xj = 1) and P (Xi = 1, Xj = 1) =
P (Xi = −1, Xj = −1). Hence it can be shown that even
φi(j) ≥ tanh θ. Now taking γ = ∆ tanh 2θ and β = tanh θ
in Theorem 1 gives the result.

Lemma 8
Proof: The proof is similar to that in [13]. Let S ⊂ V

such that |S| ≤ s. For any i ∈ V using Azuma’s inequality
we get,

P (|P̂ (xi, xS)− P (xi, xS)| > γ3) ≤ 2 exp(−2γ2
3n)

≤ 2δ3
(2|X |p)s+1

(say)

Now taking union bound over all i ∈ V , S ⊂ V , |S| ≤ s
and all xi ∈ X , xS ∈ X |S|, with probability at least 1−δ3 we
have |P̂ (xi, xS) − P (xi, xS)| < γ3, for any i ∈ V , S ⊂ V ,
|S| ≤ s. This implies

||P̂ (Xi, XS)− P (Xi, XS)||TV ≤ |X |(s+1)

2
γ3

||P̂ (XS)− P (XS)||TV ≤ |X |(s+1)

2
γ3

Now taking γ3 = ε2α2

256|X |s+2 and using Lemma 5 we get,

|Ĥ(Xi|XS)−H(Xi|XS)| ≤ |Ĥ(Xi, XS)−H(Xi, XS)|+
|Ĥ(XS)−H(XS)|

≤ |X |

(
2||P̂ (Xi, XS)− P (Xi, XS)||TV

|X |

log
|X |

2||P̂ (Xi, XS)− P (Xi, XS)||TV
+

2||P̂ (XS)− P (XS)||TV
|X |

log
|X |

2||P̂ (XS)− P (XS)||TV

)
≤ 2|X |

√
|X |sγ3 <

αε

8
= ζ

Theorem 3
Proof: The proof of correctness when P (X) is known

is straight forward. From local Markov property (1) the
conditional entropy H(Xi|XNi) = H(Xi|XV) < H(Xi|XA)
for any set A not containing all the neighbors Ni. From
degeneracy assumption (A1) including a neighboring node in
the conditioning set always produce a decrease in entropy by at
least ε. In RecGreedy(ε) in each iteration the algorithm runs
till all the neighbors Ni are included in the conditioning set
and the last added node is always a neighbor. In GreedyP (ε)
nodes are added till all neighbors have been included in the
conditioning set. Then in the pruning step removing a non-
neighbor does not increase the entropy, therefore all spurious
nodes are detected and removed. In FbGreedy(ε, α) each
iteration decrease entropy by at least (1 − α)ε/2. Since the
entropy is bounded it terminates in a finite number of steps and

minimum is reached only when all neighbors have been added
to the conditioning set. All spurious nodes get eliminated by
the backward steps (in earlier iterations or after all neighbors
are added).

Now we give the proof of sample complexity when we
have samples. Define the error event E = {∃S ⊂ V, |S| <
ξ| |Ĥ(Xi|XS)−H(Xi|XS)| > ε

8}. Note that when Ec occurs
we have for any i ∈ V , j ∈ Ni, A ⊂ V \{i, j}, |A| < ξ

Ĥ(Xi|XA)− Ĥ(Xi|XA, Xj) ≥ H(Xi|XA)

−H(Xi|XA, Xj)−
ε

4
>

3ε

4
(11)

which follows from equation (3).

Proof for RecGreedy(ε) algorithm: We first show that when
Ec occurs the RecGreedy(ε) correctly estimates the graph G.
The proof is by induction. Let Ni = {j1, . . . , j∆i

} ⊂ Si since
super-neighborhoods Si are given. Let r denote the counter
indicating the number of times the outermost while loop has
run and s be the counter indicating the number of times the
inner while loop has run in a particular iteration of the outer
while loop. Clearly s ≤ |Si|. In the first step since T̂ (i) = φ
the algorithm finds the node k ∈ Si such that Ĥ(Xi|Xk) is
minimized and adds it to T̂ (i). Suppose it runs till s = s1 such
thatNi 6⊂ T̂ (i), then ∃ some jl ∈ Ni such that jl /∈ T̂ (i). Then
from equation (11) Ĥ(Xi|XT̂ (i), Xjl) < Ĥ(Xi|XT̂ (i))− ε/2.
Hence mink∈Si−T̂ (i) Ĥ(Xi|XT̂ (i), Xk) < Ĥ(Xi|XT̂ (i))−ε/2.
Therefore the control goes to the next iteration s = s1 + 1.
However after the last neighbor say jl is added to T̂ (i) we
have

|Ĥ(Xi|XT̂ (i), Xk)− Ĥ(Xi|XT̂ (i))|

≤ |H(Xi|XT̂ (i), Xk)−H(Xi|XT̂ (i))|+
ε

4

= 0 +
ε

4
=
ε

4
<
ε

2
(12)

for any k ∈ Si − T̂ (i). Thus jl is added to N̂i, variable
complete is set to TRUE and the control exits the inner while
loop going to the next iteration r = r+1. Proceeding similarly
one neighboring node is discovered in each iteration r = 1 to
r = ∆i. At r = ∆i + 1, N̂(i) = Ni. Thus in step s = 1,
T̂ (i) = Ni, so the entropy cannot be reduced further. Hence
variable iterate is set to FALSE and control exits the outer
while loop returning the correct neighborhood N̂(i) = Ni.
Lemma 6 bounds the number of steps in each iteration by
2 log |X |

ε .

Now taking δ3 = δ, s = 2 log |X |
ε , ζ = ε

8 in Lemma 8 we

have for n = Ω
(
|X |2 log |X|/ε

ε5 log p
δ

)
, P (E) ≤ δ.

Therefore with probability greater than 1 − δ the
RecGreedy(ε) correctly recovers G.

Proof for FbGreedy(ε, α) algorithm: Define E = {∃S ⊂
V, |S| < ξ| |Ĥ(Xi|XS) − H(Xi|XS)| > αε

8 }. Let s denote
the number of iterations of the while loop. When Ec occurs
we have for any i ∈ V , j ∈ Ni, A ⊂ V \{i, j}, |A| < ξ

13

Ĥ(Xi|XA)− Ĥ(Xi|XA, Xj) ≥ H(Xi|XA)

−H(Xi|XA, Xj)−
αε

4
>

3ε

4
(13)

Again we prove by induction. For s = 1 the forward step
adds a node to the conditioning set N̂(i) as shown previously
for the RecGreedy(ε) algorithm. Consider iteration s > 1.
Note that it is enough to show the following.
• In each iteration the backward step never removes a

neighboring node j ∈ Ni.
• After the last neighbor is added to the conditioning set
N̂(i) the backward step removes all non-neighbors if any.

From equation (13) it is clear that removing a neighboring
node j ∈ N̂(i)

⋂
Ni increases the entropy by at least 3ε

4 > αε
2 .

Hence a neighboring node is never removed in the backward
step. If there exists a non-neighbor l ∈ N̂(i) such that
Ĥ(Xi|XN̂(i)\l)−Ĥ(Xi|XN̂(i)) <

αε
2 and it produces the least

increase in entropy then it gets removed from N̂(i) and we go
to iteration s+1. This continues till the forward step had added
all neighbors j ∈ Ni to the conditioning set. After adding the
last neighbor to the conditioning set equation (12) ensures that
the forward step adds no other nodes to the conditioning set
N̂(i). If N̂(i) = Ni we are done. Else for any non-neighbor
j ∈ N̂(i) we have,

|Ĥ(Xi|XN̂(i)\j)− Ĥ(Xi|XN̂(i))|

≤ |H(Xi|XN̂(i)\j)−H(Xi|XN̂(i))|+
αε

4

= 0 +
αε

4
=
αε

4
<
αε

2
(14)

Hence the backward step will remove j from the
conditioning set (or any other non-neighbor that produces the
least increase in entropy). This occurs till all non-neighbors
are removed and N̂(i) = Ni when neither the forward
or the backward step works. The flag complete is then
set to TRUE and Algorithm 2 exits the while loop giving
the correct neighborhood of node i. Again from Lemma 7
the number of steps required for convergence is bounded
by 4 log |X |

(1−α)ε . As shown previously for the RecGreedy(ε)

algorithm from Lemma 8 with δ3 = δ, s = 4 log |X |
(1−α)ε and

ζ = αε
8 for n = Ω

(
|X |4 log |X|/((1−α)ε)

(1−α)α4ε5 log p
δ

)
the probability

of error P (E) ≤ δ. Therefore the FbGreedy(ε, α) succeeds
with probability at least 1− δ. This completes the proof.

Proof for GreedyP (ε) algorithm: The proof is similar to that
for the RecGreedy(ε) algorithm. Let event E be as defined in
the proof for RecGreedy(ε) algorithm. When event Ec occurs
the Greedy(ε) runs till all neighbors are added to the set N̂(i).
Then for non-neighbors j ∈ N̂(i)

|Ĥ(Xi|XN̂(i)\j)− Ĥ(Xi|XN̂(i))|

≤ |H(Xi|XN̂(i)\j)−H(Xi|XN̂(i))|+
ε

4

= 0 +
ε

4
=
ε

4
<
ε

2

Hence j is removed from N̂(i). But for any neighbor k ∈
N (i)

|Ĥ(Xi|XN̂(i)\k)− Ĥ(Xi|XN̂(i))|

≥ |H(Xi|XN̂(i)\j)−H(Xi|XN̂(i))| −
ε

4

≥ ε− ε

4
=

3ε

4
>
ε

2

Thus the neighbors are not eliminated. The algorithm ter-
minates after all non-neighbors have been eliminated. The
probability of error is upper bounded by P (E) ≤ δ with
number of samples n = Ω

(
|X |2 log |X|/ε

ε5 log p
δ

)
.

Theorem 4
Proof: First consider the RecGreedy(ε) algorithm. With

probability 1− δ Algorithm 1 finds the correct neighborhood
of each node i. In this case from Lemma 6 the number of
steps in each recursion is O(1

ε), the search in each step takes
O(ξ) time, number of recursions is at most ∆ and the entropy
calculation takes O(n) time for each node i. Hence the overall
runtime is O(pε∆ξn). When the algorithm makes an error with
probability δ the number of steps and the number of recursions
are bounded by O(ξ). Hence the overall expected runtime is
O(δpξ3n+ (1− δ)pε∆ξn).

For the FbGreedy(ε, α) algorithm from Lemma 7 we
know that the number of steps is O(1

(1−α)ε). The search in
either the forward or backward step is bounded by ξ and
the entropy calculation takes O(n) time. Hence when the
algorithm succeeds the run time is O(p

(1−α)εξn). Note that
even when the algorithm fails with probability δ, we can
prevent going into infinite loops by making sure that once the
forward step stopped it is never restarted. Hence the number of
steps will still be O(1

(1−α)ε) and the overall runtime remains
the same. Thus the expected runtime is O(p

(1−α)εξn).
In GreedyP (ε) algorithm when it succeeds with probability

1 − δ, for each node i ∈ V , the Greedy(ε) takes at most
2 log |X |

ε steps. In each step search set is bounded by ξ and con-
ditional entropy computation takes O(n) time. After greedy
algorithm terminates |N̂(i)| ≤ 2 log |X |

ε since one node has
been added in each step. Hence number iterations in pruning
step is bounded by 2 log |X |

ε and again conditional entropy
computation take O(n) time. Hence the total run-time is
O(pε ξn+ p

εn) = O(pε (ξ+1)n). When error occurs the number
of greedy steps and pruning iterations is bounded by ξ. There-
for the expected run-time is O(δpξ(ξ+1)n+(1−δ)pε (ξ+1)n).

Proposition 1
Proof: Define H(a) = a log(1

a) + (1 − a) log(1
1−a) for

0 ≤ a ≤ 1. Then simple calculation shows H(X0|XD+1) =
H(p) and H(X0|X1) = H(q) where

p =
2D+1

2D+1 + 2(e2θ + e−2θ)D

q =
2D + 2e−2θ(e2θ + e−2θ)D−1

2D+1 + 2(e2θ + e−2θ)D

14

Note that p < 1
2 and q < 1

2 . Since H(a) is monotonic
increasing for 0 < a < 1

2 , H(X0|XD+1) < H(X0|X1) iff
p < q. This implies

2D+1 < 2D + 2e−2θ(e2θ + e−2θ)D−1

2 < 1 + e−2θ

(
e2θ + e−2θ

2

)D−1

e2θ <

(
e2θ + e−2θ

2

)D−1

D >
2θ

log
(
e2θ+e−2θ

2

) + 1 =
2θ

log cosh (2θ)
+ 1

Proposition 2
Proof: For each node i ∈ V its distribution can be

made conditionally independent of all other nodes except
the neighbors. In order to find N (i) the CVDT algorithm
maybe run within the super-neighborhood set Si to reduce its
computation complexity. The minimum size of the separator is
upper bounded ∆. Let |Si| < ∆R. Then CVDT searches over
all possible conditioning set of size ∆, which takes

(
∆R

∆

)
=

O(∆∆R) iterations. For each conditioning set it takes O(n)
time to compute the conditional variation distance and |X |∆
iterations to find the maximum conditional variation distance.
Therefore the expected runtime is O(p∆(∆+1)R|X |∆n).

